CSIR-UGC National Eligibility Test (NET) for Junior Research Fellowship & Lecturership
SYLLABUS
PHYSICAL SCIENCES
PART ‘A’ CORE
I. Mathematical Methods of Physics
Dimensional analysis. Vector algebra and vector calculus. Linear algebra, matrices, Cayley-Hamilton Theorem. Eigenvalues and eigenvectors. Linear ordinary differential equations of first & second order, Special functions (Hermite, Bessel, Laguerre and Legendre functions). Fourier series, Fourier and Laplace transforms. Elements of complex analysis, analytic functions; Taylor & Laurent series; poles, residues and evaluation of integrals. Elementary probability theory, random variables, binomial, Poisson and normal distributions. Central limit theorem.
II. Classical Mechanics
Newton’s laws. Dynamical systems, Phase space dynamics, stability analysis. Central force motions. Two body Collisions - scattering in laboratory and Centre of mass frames. Rigid body dynamicsmoment of inertia tensor. Non-inertial frames and pseudoforces. Variational principle. Generalized coordinates. Lagrangian and Hamiltonian formalism and equations of motion. Conservation laws and cyclic coordinates. Periodic motion: small oscillations, normal modes. Special theory of relativityLorentz transformations, relativistic kinematics and mass–energy equivalence.
III. Electromagnetic Theory
Electrostatics: Gauss’s law and its applications, Laplace and Poisson equations, boundary value problems. Magnetostatics: Biot-Savart law, Ampere's theorem. Electromagnetic induction. Maxwell's equations in free space and linear isotropic media; boundary conditions on the fields at interfaces. Scalar and vector potentials, gauge invariance. Electromagnetic waves in free space. Dielectrics and conductors. Reflection and refraction, polarization, Fresnel’s law, interference, coherence, and diffraction. Dynamics of charged particles in static and uniform electromagnetic fields.
IV. Quantum Mechanics
Wave-particle duality. Schrödinger equation (time-dependent and time-independent). Eigenvalue problems (particle in a box, harmonic oscillator, etc.). Tunneling through a barrier. Wave-function in coordinate and momentum representations. Commutators and Heisenberg uncertainty principle. Dirac notation for state vectors. Motion in a central potential: orbital angular momentum, angular momentum algebra, spin, addition of angular momenta; Hydrogen atom. Stern-Gerlach experiment. Timeindependent perturbation theory and applications. Variational method. Time dependent perturbation theory and Fermi's golden rule, selection rules. Identical particles, Pauli exclusion principle, spin-statistics connection.
V. Thermodynamic and Statistical Physics
Laws of thermodynamics and their consequences. Thermodynamic potentials, Maxwell relations, chemical potential, phase equilibria. Phase space, micro- and macro-states. Micro-canonical, canonical and grand-canonical ensembles and partition functions. Free energy and its connection with thermodynamic quantities. Classical and quantum statistics. Ideal Bose and Fermi gases. Principle of detailed balance. Blackbody radiation and Planck's distribution law.
VI. Electronics and Experimental Methods
Semiconductor devices (diodes, junctions, transistors, field effect devices, homo- and hetero-junction
devices), device structure, device characteristics, frequency dependence and applications. Opto-electronic
devices (solar cells, photo-detectors, LEDs). Operational amplifiers and their applications. Digital
techniques and applications (registers, counters, comparators and similar circuits). A/D and D/A
converters. Microprocessor and microcontroller basics.
Data interpretation and analysis. Precision and accuracy. Error analysis, propagation of errors. Least
squares fitting.
PART ‘B’ ADVANCED
I. Mathematical Methods of Physics
Green’s function. Partial differential equations (Laplace, wave and heat equations in two and three dimensions). Elements of computational techniques: root of functions, interpolation, extrapolation, integration by trapezoid and Simpson’s rule, Solution of first order differential equation using RungeKutta method. Finite difference methods. Tensors. Introductory group theory: SU(2), O(3).
II. Classical Mechanics
Dynamical systems, Phase space dynamics, stability analysis. Poisson brackets and canonical transformations. Symmetry, invariance and Noether’s theorem. Hamilton-Jacobi theory.
III. Electromagnetic Theory
Dispersion relations in plasma. Lorentz invariance of Maxwell’s equation. Transmission lines and wave guides. Radiation- from moving charges and dipoles and retarded potentials.
IV. Quantum Mechanics
First- and second-order phase transitions. Diamagnetism, paramagnetism, and ferromagnetism. Ising model. Bose-Einstein condensation. Diffusion equation. Random walk and Brownian motion. Introduction to nonequilibrium processes.
VI. Electronics and Experimental Methods
Linear and nonlinear curve fitting, chi-square test. Transducers (temperature, pressure/vacuum, magnetic
fields, vibration, optical, and particle detectors). Measurement and control. Signal conditioning and
recovery. Impedance matching, amplification (Op-amp based, instrumentation amp, feedback), filtering
and noise reduction, shielding and grounding. Fourier transforms, lock-in detector, box-car integrator,
modulation techniques.
High frequency devices (including generators and detectors).
VIII. Condensed Matter Physics
Bravais lattices. Reciprocal lattice. Diffraction and the structure factor. Bonding of solids. Elastic properties, phonons, lattice specific heat. Free electron theory and electronic specific heat. Response and relaxation phenomena. Drude model of electrical and thermal conductivity. Hall effect and thermoelectric power. Electron motion in a periodic potential, band theory of solids: metals, insulators and semiconductors. Superconductivity: type-I and type-II superconductors. Josephson junctions. Superfluidity. Defects and dislocations. Ordered phases of matter: translational and orientational order, kinds of liquid crystalline order. Quasi crystals.
IX. Nuclear and Particle Physics
Basic nuclear properties: size, shape and charge distribution, spin and parity. Binding energy, semiempirical mass formula, liquid drop model. Nature of the nuclear force, form of nucleon-nucleon
potential, charge-independence and charge-symmetry of nuclear forces. Deuteron problem. Evidence of
shell structure, single-particle shell model, its validity and limitations. Rotational spectra. Elementary
ideas of alpha, beta and gamma decays and their selection rules. Fission and fusion. Nuclear reactions,
reaction mechanism, compound nuclei and direct reactions.
Classification of fundamental forces. Elementary particles and their quantum numbers (charge, spin,
parity, isospin, strangeness, etc.). Gellmann-Nishijima formula. Quark model, baryons and mesons. C, P,
and T invariance. Application of symmetry arguments to particle reactions. Parity non-conservation in
weak interaction. Relativistic kinematics.
GATE Physics
SYLLABUS
Section 1: Mathematical Physics
Vector calculus: linear vector space: basis, orthogonality and completeness; matrices; similarity transformations, diagonalization, eigenvalues and eigenvectors; linear differential equations: second order linear differential equations and solutions involving special functions; complex analysis: Cauchy-Riemann conditions, Cauchy's theorem, singularities, residue theorem and applications; Laplace transform, Fourier analysis; elementary ideas about tensors: covariant and contravariant tensors.
Section 2: Classical Mechanics
Lagrangian formulation: D'Alembert's principle, Euler-Lagrange equation, Hamilton's principle,
calculus of variations; symmetry and conservation laws; central force motion: Kepler problem and
Rutherford scattering; small oscillations: coupled oscillations and normal modes; rigid body
dynamics: interia tensor, orthogonal transformations, Euler angles, Torque free motion of a
symmetric top; Hamiltonian and Hamilton's equations of motion; Liouville's theorem; canonical
transformations: action-angle variables, Poisson brackets, Hamilton-Jacobi equation.
Special theory of relativity: Lorentz transformations, relativistic kinematics, mass-energy
equivalence.
Section 3: Electromagnetic Theory
Solutions of electrostatic and magnetostatic problems including boundary value problems; method of images; separation of variables; dielectrics and conductors; magnetic materials; multipole expansion; Maxwell's equations; scalar and vector potentials; Coulomb and Lorentz gauges; electromagnetic waves in free space, non-conducting and conducting media; reflection and transmission at normal and oblique incidences; polarization of electromagnetic waves; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.
Section 4: Quantum Mechanics
Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; Dirac Bra-Ket notation, linear vectors and operators in Hilbert space; one dimensional potentials: step potential, finite rectangular well, tunneling from a potential barrier, particle in a box, harmonic oscillator; two and three dimensional systems: concept of degeneracy; hydrogen atom; angular momentum and spin; addition of angular momenta; variational method and WKB approximation, time independent perturbation theory; elementary scattering theory, Born approximation; symmetries in quantum mechanical systems.
Section 5: Thermodynamics and Statistical Physics
Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck's distribution law; Bose-Einstein condensation; first and second order phase transitions, phase equilibria, critical point.
Section 6: Atomic and Molecular Physics
Spectra of one-and many-electron atoms; spin-orbit interaction: LS and jj couplings; fine and hyperfine structures; Zeeman and Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic molecules; electronic transitions in diatomic molecules, Franck-Condon principle; Raman effect; EPR, NMR, ESR, X-ray spectra; lasers: Einstein coefficients, population inversion, two and three level systems.
Section 7: Solid State Physics
Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids: nearly free electron and tight binding models; metals, semiconductors and insulators; conductivity, mobility and effective mass; Optical properties of solids; Kramer's-Kronig relation, intra- and inter-band transitions; dielectric properties of solid; dielectric function, polarizability, ferroelectricity; magnetic properties of solids; dia, para, ferro, antiferro and ferri-magnetism, domains and magnetic anisotropy; superconductivity: Type-I and Type II superconductors, Meissner effect, London equation, BCS Theory, flux quantization.
Section 8: Electronics
Semiconductors in equilibrium: electron and hole statistics in intrinsic and extrinsic semiconductors; metal-semiconductor junctions; Ohmic and rectifying contacts; PN diodes, bipolar junction transistors, field effect transistors; negative and positive feedback circuits; oscillators, operational amplifiers, active filters; basics of digital logic circuits, combinational and sequential circuits, flipflops, timers, counters, registers, A/D and D/A conversion.
Section 9: Nuclear and Particle Physics
Nuclear radii and charge distributions, nuclear binding energy, electric and magnetic moments; semiempirical mass formula; nuclear models; liquid drop model, nuclear shell model; nuclear force and two nucleon problem; alpha decay, beta-decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles; photons, baryons, mesons and leptons; quark model; conservation laws, isospin symmetry, charge conjugation, parity and time-reversal invariance.